d s t q q s s
 
 
 
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31
 

Publicações

Cristian A. M. Salla, Jéssica Teixeira dos Santos, Giliandro Farias, Adailton J. Bortoluzi, Sergio F. Curcio, Thiago Cazati, Róbert Izsák, Frank Neese, Bernardo de Souza, and Ivan H. Bechtold. 2019. “New Boron(III) Blue Emitters for All-Solution Processed OLEDs: Molecular Design Assisted by Theoretical Modeling.” European Journal of Inorganic Chemistry, 2019, 17, Pp. 2247-2257. Publisher's VersionAbstract
Luminescent boron(III) complexes have recently been employed as emitters in organic light-emitting diodes (OLEDs) with reasonable success. They are easy to prepare and sufficiently stable to be used in such devices, being of great interest as a simple molecular emissive layer. Although emitters for this class with all colors have already been reported, highly efficient and stable blue emitters for applications in solution processed devices still pose a challenge. Here, we report the design, synthesis, and characterization of new boron complexes based on the 2-(benzothiazol-2-yl)phenol ligand (HBT), with different donor and acceptor groups responsible for modulating the emission properties, from blue to red. The molecular design was assisted by calculations using our newly developed formalism, where we demonstrate that the absorption and fluorescence spectra can be successfully predicted, which is a powerful technique to evaluate molecular photophysical properties prior to synthesis. In addition, density functional theory (DFT) enables us to understand the molecular and electronic structure of the molecules in greater detail. The molecules studied here presented fluorescence efficiencies as high as Φ = 0.88 and all solution processed OLEDs were prepared and characterized under an ambient atmosphere, after dispersion in the emitting layer. Surprisingly, even considering these rather simple experimental conditions, the blue emitters displayed superior properties compared to those in the present literature, in particular with respect to the stability of the current efficiency.
Teodoro Gauzzi, Gilberto Álvares da Silva, Rafael Silva Diniz, and Leonardo Martins Graça. 2019. “Polycrystals of ``imperial'' topaz from Minas Gerais state, Brazil.” Mineralogy and Petrology. Publisher's VersionAbstract
``Imperial'' topaz is a gemstone variety that occurs in the Ouro Preto region (Minas Gerais state, Brazil). Polygonal sectors within the core and rims of topaz crystals, were optically observed but without consensual explanations about them. With the aid of optical microscopy, scanning electron microscopy-cathodoluminescence (SEM-CL), backscattered electrons (BSE) imaging, electron probe micro-analyser (EPMA) chemical analyses and electron backscatter diffraction (EBSD) maps, the present study intended to demonstrate the distinct crystallographic orientations within ``imperial'' topaz and relate the polygonal sectors with the compositional data. Cross-polarised transmitted-light photomicrographs show a well delimited and optically heterogeneous central rhombic area at (21 l) in the cores, and quadrant-like and alternated extinction areas at (200, (010) and (110) in the rims. Scanning electron microscopy-cathodoluminescence images show a central rhombic area heterogeneously luminescent in the core, and dark and homogeneous rims. Grey and completely homogeneous BSE images and EPMA results corroborate constant and homogeneous major composition of ``imperial'' topaz. Electron backscatter diffraction maps collected in the rim region show different areas and microstructural features instead of a uniform microstructure. The respective pole figures of orthorhombic system yielded multiple (001) poles disoriented in higher than 15° from each other. These results display numerous c-axes, suggesting distinct crystallographic orientations, and no reduction in the orthorhombic symmetry. Therefore, the presumed monocrystal of ``imperial'' topaz actually is a polycrystal.